Full width home advertisement

Post Page Advertisement [Top]

➡️How to Design Hybrid Solar PV Systems

Hybrid Solar PV Systems:- A hybrid solar  PV system is essentially a system that contain more than one power supply other than the PV, to meet the electrical power demand of the loads. Configuration of hybrid solar PV system is shown in below figure.




The system need to design on the basis of following requirements.

A.    Load – 2 No’s of  5 HP Lathe machine

B.     Duration of operation -14 Hrs. 6 AM -8 PM

C.    Location - Hyderabad

D.    Hybrid system

E.     Electricity grid supply not available – 7 AM- 10 AM and 6-8 PM (total 5 Hrs.)

F.     Redundancy of system – 1 day

G.    Please use following specs for project

a.      Modules -320 W, Vikram module

b.      Statcon inverter /SMA – Hybrid inverter

c.       Exide or eastmen battery- 200 Ah

d.      Raised Structure -12 feet, C type (SS) channel, 2.5 MM thick

☛ Click Here For View Sample of Solar Module Mounting Structure

Design By :- AutoCAD 

1.     Solar Resources Data of Hyderabad City

A.   Average Direct Normal Ir-radiance

                                                       I.            Hyderabad, Telangana, India

                                                    II.            Latitude : 17.35

                                                 III.            Longitude : 78.45

                                                IV.            Annual Average : 5.27 kWh/m2/day

B.   Average Global Horizontal Ir-radiance

                                                       I.            Hyderabad, Telangana, India

                                                    II.            Annual Average : 5.77 kWh/m2/day

                                                 III.            Solar Azimuth Angle 450

Source of above data NREL site

1.     Load Assessments

We have 2 No’s of 5 HP lathe machine for water pumping

                   1 HP = 746 Watts

 746 W * 2 = 1,492 W 1.4 Kw

                   This is the wattage of lathe machine

          Hence total loads required for 1 hrs. 1.4 Kwh  1.5 Unit 

          Total duration of operation = 19

9 hrs. Power supply through PV + 5 hrs. Power supply through Battery + Redundancy of system 5 hrs. next day = 19 hrs.

                                                         19 * 1.5 = 28.5

          Our 1 kw PV system generate per day 4.5 unit electricity 

                             28.5/4.5 = 6.4  approx. we need 7 Kw System.

            We are placed our SPV module on site of angle of place latitude with south orientation.

2.     System Design & Calculation

As per inverter availability we are connect Statcon hybrid inverter with rated capacity 7 Kw. According to question we are using Waaree Solar module of 350 Wp.

System Calculation :

                   I.            No. of PV module

7,000 ÷ 350 = 20

We are require  20  Module         Click Here For Module Datasheet

                   II.            No. of panel in a string

As per inverter datasheet

MPPT voltage range – 132 to 266

Maximum input DC voltage range – 106 V

Maximum voltage range of inverter ÷ Module Voc

 266 ÷ 46.40 = 5.73 Approx 6

Hence                                                                Click  Here For Inverter Datasheet 

6 Module connected in series * 37.50 Vmp of Solar PV Module =225 V this data is lies our MPPT voltage range.

Thus

                   We are connect 6 module in series.

             III.            String Power

Module wattage * No. of PV module connected in series

                   350 * 6 = 2,100 Watts

                   Total wattage of plant / String power

                                     7,000 ÷ 2,100 = 3.33 ≅ 3 Strings

                                      3.33* 2100 = 6,993 Watts or 6.9 Kw Approx.

                                                     ≅ 7 Kw

            IV.            No. of module in a sting

Total No. of PV module / No. of PV module connected in series

                   20 ÷ 6 =3.33 ≅ 3 Strings 

No. of strings * 13 module per string * wattage of module should be equal to our plant capacity

                   3.33 * 6 * 350 = 6,993 Watts or 6.9 Kw Approx

               V.            Conclusion

1.     No. of PV module -20

2.     No. of Strings -3

3.     No. of module connected series -6

4.     Total Capacity – 6.9≅ 7 Kw

3.     Battery Specification  

Battery specifications are given below

a.     Battery model – 6LMS200L

b.     Type of battery – lead acid battery

c.      Class rating C10

d.     12 V

e.      200Ah

4.     Day Of Autonomy And Battery Bank Size

Day of autonomy (No. of day system should supply load without sunlight & Grid )

                             5 hrs. per day + 5 hrs. autonomy day  = 10 hrs.

                            1.5 * 5 = 7.5 ≅8 Unit for today & 1.5 * 5 = 7.5 ≅8 Unit for next day

                                                                   Total  = 16 unit (power need to supply through battery )

          Now  

                    Power of one battery  

                                                V * I = P

                                           12* 200 = 2400 Watts or 2.4 unit (Power of one battery)

16 ÷ 2.4 = 6.66 7 battery Require for whole system

          But

                    Battery Has Certain Parameter Like DoD (Depth of Discharge), Here we are consider 50 % of Battery DoD  

                    Again from this Formula

                                                       I = P ÷ V

         Here

                                                       I = 16000  ÷ 12 

                                                    = 1,333 ≅ 1350 Ah 

         Thus                                        = 1350 ÷ 0.5 = 2700 Ah

         Now, This Ah Capacity Divide By One Battery Ah, Which is mentioned above 200 Ah    

         Hence                                      = 2700 ÷ 200 = 13.5 ≅ 14 Battery

               14 battery Require for whole system

In this context i also want to explain that A lot of different types of losses are occur  in the battery such as Heating Losses,Chemical conversion losses,Wiring Losses etc. I am not calculating all these losses here because I have taken an estimated large number everywhere.

3.     Advantage & Disadvantage of This System:- 

                                           I.            Advantage

v Continuous power supply

v Utilize the renewable sources in best way

v  Low maintenance cost

v High efficiency 

v Load management

                                        II.            Disadvantage

v Complicated controlling process

v High installation cost

v Less battery life

v Such type system is not feasible economically

v The number of instruments connectable is limited

v Such type system will have more conversion losses like PV DC current in AC current and two times losses will be founded twice time in our battery. One in the storing time and other in energy releasing time.

v Payback period of such type system is too long

5.     Conclusions & Recommendations

v Such type system is not economical for more than 100 kw capacity because payback period of such type plant is too long.

v Need to reduce conversion losses.

v Such type heavy load we can not operate long time through the battery.

A battery has life cycle up to 5 years. Before it our payback period will not complete and we may have to need to replace battery again. In this way cost of our system can be even more expensive

                                        ✴️        ✴️        ✴️


Do you want to learn on grid /Grid tied and off grid system design then please visit fallowing pages 

Click here for on grid /grid tied system design.

☛ Click here for off grid  system design.

1 comment:

Please do not enter any span link in the comment box.

Bottom Ad [Post Page]

| Designed by Colorlib